
JOURNAL OF COMPUTATIONAL PHYSICS 101, 307-3 13 (1992)

Localization Schemes in 2D Boundary- Fitted Grids

THOMAS WESTERMANN

Kernforschungszentrum Karlsruhe GmbH, Abteilung fir Numerische Physik, HDI-NP, P.O. Box 3640, 7500 Karlsruhe, Germany

Received November 30. 1989; revised October 22, 1990

A discussion of localization schemes in two-dimensional structured
grids consisting of convex four-point meshes is presented. These algo-
rithms are applicable to particle-in-cell codes based on two-dimen-
sional boundary-fitted coordinates in order to localize particles inside
the grid. They are fully vectorizable and two of them are directly
applicable also to triangular meshes. Since all of them are exact, they
avoid an overhead for a special treatment of particles near the boundary
as is necessary for the approximate localization proposed by Seldner
and Westermann (J. Comp. Phys. 79 (1988)). Hence, they are suitable
for complicated geometries with outer and inner curved boundaries.
Depending on the vector computer used, a speedup of 3.5 to 8 is
achieved for the fastest algorithm. 0 1992 Academic Press, Inc.

I. INTRODUCTION

Particle-in-cell (PIC) codes are an attractive computa-
tional tool to study kinetic phenomena, e.g., in plasma
physics [5]: A grid is introduced in order to compute the
electromagnetic fields, and particles carrying electric charge
and mass are advanced in these fields by solving the
Lorentz equation. Originally, PIC codes were developed
using uniform [S] or nonuniform [9] grid zoning with grid
lines parallel to the coordinate axis. However, with these
concepts it was not possible to treat complicated technical
devices without simplification of the geometry. An example
where it is essential to model the boundaries accurately are
intense light-ion-beam diodes for inertial confinement
fusion [3]. In the past, most codes were not able to treat
curved shapes of the emitting parts of these diodes, and thus
could not adequately model the influence of these shapes on
the focusing of the ion beams. It also turned out that sim-
plifications of technical geometries, e.g., at edges and curved
parts of the electrodes, lead to artificial field-enhancement
and, thus, to a distorted flow of particles.

To overcome these difficulties, two-dimensional PIC
codes were developed using grids fitted to the boundary of
the electromagnetic devices. The concept of structured
boundary-fitted coordinates is either based on triangular
meshes [16,7] or on four-point meshes [12,6, 131. In both
cases a logical rectangular grid is introduced onto which the
fitted grid in the physical space is mapped. Essentially, two

techniques are then used to numerically treat the fields and
particles:

The first approach as used, e.g., by Jones [6], is to solve
the field equations together with the Lorentz equation in the
logical grid. In the other case [131 one solves only the field
equations in the logical grid but advances the particles in
the physical space. In contrast to Jones, we prefer the second
method, which is extendable also to unstructured grids, and
standard techniques for solving the relativistic Lorentz
equation can be applied. However, the drawback consists in
the fact that in each time step the particles must be localized
inside an irregular grid and the fields must be interpolated
from irregular four-point meshes onto the particle positions.

In principle, the problems of interpolation as well as of
localization in irregular 2D meshes are solved by methods
introduced in [111. These algorithms are well suited for vec-
torization. The basic idea of the localization scheme in [111
is to lay a fine equidistant mesh (background grid) over the
boundary-fitted grid and to localize the particles inside this
rectangular grid. A relationship between the equidistant
mesh and the boundary-fitted grid is used to obtain the
addresses of the particles with respect to the boundary-fitted
grid. With this indirect method via a background grid one
cannot decide exactly whether a particle near a curved
boundary lies inside or outside the computational area. Par-
ticles near boundaries have to be treated separately. When
simulating geometries with curved inner boundaries such as
in the case of the self-magnetically insulated B,-diode (cf.
Fig. 8) [10, 141, the corresponding additional work for the
treatment of particles near boundaries produces a large
overhead. Hence, this method is very efficient as long as the
computational area contains no curved inner boundaries.

In this paper, three localization schemes avoiding this
overhead are discussed. These algorithms are exact and fully
vectorizable. After an introduction on the problem and the
description of the originally used non-vectorizable algo-
rithm in Section 2, a search algorithm based on the calcula-
tion of areas is outlined in Section 3. In Section 4 follows
the discussion of a scheme using the calculation of simplices.
Both methods are also applicable to triangular meshes
and contain parallel structures. In Section 5, an iterative

307 0021-9991/92 SS.00

Copyright 0 1992 by Academic Press, Inc.
All rights of reproduction in any form reserved.

308 THOMAS WESTERMANN

algorithm [151 is proposed based on a special interpolation
scheme. Summary and conclusions are left to Section 6.

II. NOTATION AND PROBLEM

Notation. In this paper we consider two-dimensional,
monoblock, structured grids consisting of arbitrary convex
four-point cells. Hence, the grid is logically equivalent to a
rectangular mesh which is a two-dimensional array of mesh
points. In order to identify cells within a grid, each cell is
assigned the addresses in the x- and y-direction of the left
lower grid point of the cell as a pair of numbers (I, J). In an
equidistant grid, the address of the cell, a particle with
coordinates (x, y) is located in, is defined by

Z= ZNT((x - x,JAx) + 1

and

J=~N~((Y-Y,)/~Y)+ 1,

where (x,, y,,) are the coordinates of the left lower corner
point of the grid and Ax and Ay are the mesh-sizes in the
x- and the y-direction, respectively (see Fig. 1).

Non-vectorized Search Algorithm. In boundary-fitted
grids, the above formulas cannot be applied anymore. For
this case we consider the fact that a particle lies inside cell
(I, J) with corners P, j, Pi+ i,i, Pi+ r,,+, , Pi,.i+ i (see Fig. 2)
if and only if it is

l above the lower cell boundary Pi,jPi+ [,,,

l on the left hand side of the right cell boundary
pi+l,jpi+l,j+l~

l below the upper cell boundary Pi, j+, Pi+ ,,,, + 1 and
l on the right hand side of the left cell boundary

pi,jpi3, + 1 .

This suggests the following non-vectorized search algorithm
(originally proposed by Halter [3A]):

SEARCH ALGORITHM. Step 1. Start in cell (I, J) =
(I,,, J,,) the particle was located in at the end of the previous
time step.

Step 2. If the particle is below the lower cell boundary:
J= J- 1, got0 step 2.

(1.3 (2.3)

EEI

(3.3)
,P(X.Y)

(1.2)
(2.2)

(3.2)

(1.1) (2,l) (3.1)

FIG. 1. Addresses of the mesh points.

FIG. 2. Particle P(.r, J) in boundary-fitted cell (1. J).

Step 3. If the particle is on the right hand side of the
right cell boundary: I= I+ 1, goto step 2.

Step 4. If the particle is above the upper cell boundary:
J=J+ 1, got0 step 2.

Step 5. If the particle is on the left hand side of the left
cell boundary: Z = I- 1, goto step 2.

Step 6. The particle is in cell (I, J).

Hence, there are at least four IF-clauses necessary for this
direct search algorithm, even in case the particle has not
moved outside the cell. This causes a very high CPU-time
and, besides, the algorithm is not efficiently vectorizable.

III. A LOCALIZATION SCHEME BASED
ON CALCULATION OF AREAS

In this section a localization scheme is investigated using
the calculation of the area of quadrangles. In order to decide
whether a particle lies inside a quadrangle ABCD, the area
of the quadrangle is calculated and compared with the sum
of the areas of the four triangles ABP, BCP, CDP, DAP
(cf. Fig. 3).

A particle P(x, y) lies inside quadrangle ABCD if and
only if the area of the quadrangle A,,,, is equal to the sum
of the areas of the four triangles AABP, ABCP, ACDP, A,,,:

A ABCD- --AA,, +AB..+&DP+ADAP

o Particle P is inside quadrangle ABCD.

If the particle is outside the quadrangle, the sum of the
areas of the four triangles is larger than the area of the
quadrangle (cf. Fig. 4):

A ABCD<AABP+ABCP+ACDP+ADAP

o Particle P is outside quadrangle ABCD.

A B

FIG. 3. Point P(x, v) inside quadrangle ABCD.

LOCALIZATION SCHEMES IN 2D BOUNDARY-FITTED GRIDS 309

FIG. 4. Point P(x, y) outside quadrangle AECD.
with

Under the reasonable condition that during a simulation
with a particle-in-cell code a particle can only cross to a
neighboring cell, it is sufficient to limit the search to the cell
the particle was located in at the end of the previous time
step and to the surrounding cells. This yields the following
search algorithm:

SEARCH ALGORITHM. Step 1. Start in cell (I, J) =
(I,, .Z,) the particle was located in at the previous time step.

Step 2. Calculate the areas A4($!, Ay$, A$$, A?;;,
Ag$ of cell (Z, .Z). Divide the sum of the four triangles by
the area of the quadrangle A$‘$,.

Step 3. Repeat step 2 for the surrounding cells.
Step 4. The particle is located in the cell with the

smallest area quotient.

This algorithm is applicable also to triangular grids. First,
one has to select all triangles the particle can be located in
and partition each of these triangles into three sub-triangles.
With the same argument as before, the particle is located in
the triangle with the smallest area quotient. The calculation
of the areas of the quadrangles as well as of the sub-triangles
can be computed independently and are, therefore, suited
for parallelization.

IV. A LOCALIZATION SCHEME BASED ON
CALCULATION OF SIMPLICES

In this section a localization scheme is introduced using
the calculation of simplices. Let S be the convex hull of
points 4x,, yd, W,,, ylo), C(XO~, YO,) Psimplex):

S= ~,A+~,B+~,C;~i~0,i=1,2,3; ; Aj=1
i=l

Every element (x, y) E S is uniquely represented by a triple
of real numbers (a, /I, y) such that

A(~,.Y,,) %,,Y,,)

FIG. 5. Point P(x, y) inside triangle ABC

cr+B+y=l and rx3O,fl>O,yaO.

Every point inside a triangle A(x,, y,,), B(x,~, y 1o),
C(X,,, y,,) can be interpreted as an element of the corre-
sponding convex hull S (cf. Fig. 5). Hence, a particle P(x, y)
lies inside a triangle ABC if and only if a, j?, y E [w exist with
the properties

ax00 + BXlO + YXO, = x,

“Yoo + bYlO + YYOl = Y,

a+p+y= 1,

and

For a given point P(x, y) a, fi, y can be computed using
the formulas

(Yo, - YOONX -x00) - (x01 - %0)(Y - Yoo)
B = (Yo1- YOCJ x10 - x00) - (Y10- YcdXOl - %o)’

(1)

- (YlO - Yoo)(X - %o) + (x10 - XOONY - Yoo)

y = (YOl - Yoo)(x10 - x00) - (4’10 - Yoo)(xol - x00)’
(2)

tx=l-y-8. (3)

In order to localize a particle inside a triangle, it is sufficient
to compute ~1, fi, y E [w according to Eqs. (1)-(3) and check
whether

or not. Only if condition (4) is satisfied, point P(x, y) lies
inside the triangle ABC.

In order to localize a particle inside a quadrangle ABCD,
one has to partition the quadrangle into two triangles ABD
and DBC and calculate for both triangles (a’, /?I, y’) and
(N’, p*, y’), respectively. The particle then lies inside
the quadrangle ABCD if (a’, fl’, y1)~13 = [0, 11’ or
(2, p*, y2) E 13.

581/101/2-6

310 THOMAS WESTERMANN

Under the condition that during a time step of a particle-
in-ceil simulation a particle traverses at most over one cell
boundary, the search algorithm can be limited to the cell the
particle was located in at the previous time step and to the
surrounding cells. By applying the simplex scheme, the
following algorithm for quadrangles is obtained:

SEARCH ALGORITHM. Step 1. Let (1, J) = (I,, J,,) be
the cell the particle was located in at the previous time step.

Step 2. Partition cell (I,, J,) and the eight surrounding
cells into two triangles, respectively. In each triangle
solve the system of equations (l)-(3) leading to
(a’, /I’,)I’), (a’*, /I’*, y’*).

Step 3. Set di = min(a’, pi, y’), i = 1, 18.
Step 4. Determine the index i for which di is non-

negative. Then the particle is inside the corresponding cell.

It is trivial to note that this search algorithm is directly
valid for triangular meshes. Since the computation of the
parameters (c?, /I’, ;“) can be computed independently of
each other, this computation can be performed in parallel.

V. A LOCALIZATION ALGORITHM BASED ON
AN INTERPOLATION SCHEME

The advantages of the first two localization methods are
that the calculation of the areas and the values of (SI, B, y)
can be computed separately and independently of each
other. Therefore, this algorithm is well suited for a
parallelization strategy. However, these results cannot be
used in order to find a localization strategy to shorten the
search. In particular, when the particles cross more than one
cell during a time step, the search has to be extended to
additional 16 or even more cells. In this section a localiza-
tion algorithm is introduced taking provisional results into
account. The algorithm is based on an interpolation scheme
[1.51 valid for arbitrary convex quadrangles. The interpola-
tion formulas are applied iteratively in order to localize the
particles inside boundary-fitted grids.

Before discussing our scheme, the generalized area-
weighting method used for interpolation is briefly outlined
for completeness. For a detailed discussion see Ref. [111.

After having finished the work, we were informed that
J. U. Brackbill and H. M. Ruppel developed the same ideas
for PIC calculations of fluid flows [2] and we heard from
J. Ambrosiano [l] that he and R. Liihner investigated a
similar search strategy in order to localize particles inside
unstructured triangular meshes.

Interpolation

If a particle P(cY, , c(*) is located in a unit square, cell (Z, J),
the field E, at the particle position is calculated from the

helds Ei,,, E,, ,,,, E,, ,,, ,. ,, E ,,,,. , given at the mesh points
using the standard area-weighting method [4, 8 1:

E,=(l -a,)(1 -x2) E,.,+x,(l -az)E,+ /

In order to be able to apply the area-weighting method in
an arbitrary quadrangle Q the non-equidistant cell has
to be transformed into the unit square I2 = [0, 11 x
[0, 11. Let (x, v) E Q be the position of the particle inside
cell (I, J) with corners l-x ,,,‘.l’i.,h (+x1+ 1./‘.1’,, I,,)’
(xi+,,j+,, Y;+,.~+ ‘1, (x,,,. I3 Ye.,+,). The interpolation
weights (sl,, x2) E I2 are given by the following formulas:

-p + (p2 + q)1’2

u2= (x:+1,,+, - 1)
for ,Y;+ ,,,+, # 1,

(5)
cl, =

- 1 +‘Yv:::l,,+,-1)
for .x:+,,~+, = I.

X’
a, =

l+c12(x:+,.,+,-l)’
(6)

where

p=~(1+x”(V;+,,+,-1)-y”(x~~+,,,+,-1)) _ 3

and

The computation of the square root and the IF-clauses
for the case x:+,,,+, z 1 are avoided by solving Eq. (5)
iteratively,

3
cp=

2 1 + xs/xs ,+l.,+:(Y;+l.,+4
(7)

a’ = y”(1 +cI;-‘(x;+l,j+I- 1))
2 1 +x;-‘(X~+],,+] - l)+x”(y::+,,,+, - 1)

for ia I, (8)

and evaluating Eq. (6). When using grids consisting of
trapezoids (in particular orthogonal grids) formula (5) is
reduced exactly to the calculation of a: in (7).

One of the characteristic features of applying the
generalized area-weighting method as an interpolation
scheme is that linear functions are represented exactly. This
formulation has the advantage that the interpolation
weights can be easily evaluated in an explicit manner.

LOCALIZATION SCHEMES IN 2D BOUNDARY-FITTED GRIDS 311

Tll
1

cl-

* (a). a,)

(0.0)
I2

1

Tij

FIG. 6. Transformation of quadrangle Q onto the unit square Iz.
FIG. 7. Transformation of point P with respect to cell (I, J).

It is important to note that the transformation T (cf.
Fig. 6) of the quadrangle Q onto the unit square I2 which
maps each point P(x, y) of the quadrangle onto a point
(c~i, az) depends on the geometrical structure of the
quadrangle, e.g., the transformation is not the same for
different quadrangles.

Localization

In the following, the interpolation scheme is used in order
to find the particle position with respect to the grid: After
particle P has been advanced the interpolation weights
(c(i) a2) are computed by transforming the cell (I,, Jo) the
particle was located in at the previous time step. With
knowledge of these interpolation weights (c~i, ~1~) one can
decide whether the particle still lies inside the same cell or
whether it is outside the cell:

(cI~, a2) E I2 o Particle P still is inside cell (I,, J,).

(~1,) ~1~) $ I2 o Particle P has left cell (lo, J,).

In particular, when using an equidistant grid, and considering
that the particle can only move to a neighboring cell, the
following holds:

~,>l,cc,>l=-Particleincell(Z,+l,J,+l)

cc,~I,cr,>1~Particleincell(Z~,J,+1)

~1, < 0, ~1~ > 1 * Particle in cell (I0 - 1, Jo + 1)

~,>l,cc,~I*Particleincell(Z,+l,.Z,)

cr, E I, ~1~ E I * Particle in cell (I,, J,)

tli < 0, a2 E I * Particle in cell (Z, - 1, Jo)

t~,>1,a~<O~Particleincell(Z,+1,.Z,-1)

a,~I,a~<O*Particleincell(Z,,.Z,-1)

cr,<O,cc,<O~Particleincell(Z,-l,.Z,-1).

However, when using a non-equidistant grid (cf. Fig. 7),
it is not guaranteed that the particle is found by calculating
the weights corresponding to the old cell addresses. When
the particle has left the cell, this algorithm must be applied

iteratively until the correct interpolation weights
(c(i) CI~) E I2 are found. The search algorithm is then

SEARCH ALGORITHM. Step 1. Let (Z, J)= (I,, J,,) be
the cell the particle was located in at the previous time step.

Step 2. Compute the interpolation weights (a,, x2) with
respect to cell (Z, J).

Step 3. Add the interpolation weights to the cell
address: (Z+cr,, J+a,).

Step 4. Set (Z, J) = (ZNT(Z+ a,), ZNT(.Z+ m2)).

Step 5. Repeat steps 2 to 4 k E N times.

The parameter k depends on the structure of the grid. In
case of an equidistant grid k can be chosen to be 1. (In this
case, however, it is advisable to determine the cell in a direct
manner.) Our experience indicates that usually k = 3 is
sufficient when using a grid with convex four-point meshes.
It also turned out that for the purpose of localization it is
sufficient to compute the new cell addresses of the particles
only using U: (cf. Eq. (7)).

Due to the local character of the transformation it is
possible that at the lirst iteration cycle of the localization the
values of the weights a, and a2 are to high if the grid zoning
changes rapidly. In order to avoid such an “overshooting”
of the weights they should be restricted (for example, to be
between - 1.99 and 2.99). In particular, by restricting the
interpolation weights possible singularities occuring in
exceptional cases are eliminated.

One advantage of this scheme compared with the two
previous ones is that the search is not limited to the cell the
particle was located in at the previous time step and to the
surrounding cells, since this algorithm chooses its own
strategy for each iteration step according to the results of
the iteration step before.

Depending on the grid, a particle can cross several cells (if
this is permitted by the underlying physics and numerics)
and is found with only few iterations. However, due to the
local character of the transformation, the number k of itera-
tion steps depends on how far the particles are allowed to
move inside the grid and on the variation of the size and the
shape of the zones. In particular, when using a non-smooth
grid and particles are permitted to move over more than one

312 THOMAS WESTERMANN

cell, this scheme becomes inefficient. In this case it is
appropriate to combine the indirect localization method via
a background mesh (cf. [111) with the iterative method.
The indirect scheme delivers a good initial guess which can
be taken as the starting point for an iterative search. By
applying this combination k = 2 should always be sufftcient.

VI. RESULTS

As a matter of fact, all three localization schemes are
exact. Hence, when performing simulations with our
BFCPIC code [131, the numerical results are independent
of the algorithm used.

The localization schemes were introduced in order to
reduce the CPU-times of the BFCPIC code to a reasonable
length. In order to obtain realistic CPU-times for the
localization schemes, a typical run of the BFCPIC code in
case of the self-magnetically insulated Be-diode was per-
formed [141. For the purpose of localization it is sufficient
to limit the discussion to the grid model of this diode. A
numerical model of the self-magnetically insulated Be-diode
together with a boundary-Iitted grid (41 x 65 grid points) is
shown in Fig. 8. For the simulation about 10,000 electrons
and 22,000 ions were used. The numerical simulations were
performed on the vector computers Fujitsu VP 50 and
VP 400.

Since in our code the time step is limited in such a way

FIG. 8. Boundary-fitted grid of the self-magnetically insulated
B,-diode, 41 x 65 grid points.

TABLE I

CPU-Times per Particle of the Localization Algorithms on tFu]ltsu
Vector Computers Using k = 3

-- ..~~.. .__~ --
VP 50,‘400 VP 50 VP ‘w

CPU-time [I(.F] (scalar mode) (vector mode) (vector mode I

Non-vectorized
method 18.4 18.1 17.x
Area method 45.3 10.x 9.3
Simplex method 42.7 12.4 10.2
Iterative method 19.7 5.0 2.3

that the particles can only move to a neighboring cell per
cycle, k = 3 is sufficient for the iterative method. (When the
particles are allowed to cross two cells, k = 5 must be chosen
for this special kind of grid in order to guarantee that all
particles are found.)

In Table I the CPU-times for the localization schemes are
given together with the ones for the non-vectorizable search
algorithm. Listed is the average time required to localize
one particle.

As assumed, the original, non-vectorized algorithm is the
fastest one on the scalar units of the computers, but it is not
vectorizable. Due to the larger amount of arithmetic opera-
tions of the area method and the simplex method, these
schemes are not efficient on the scalar units. However, since
the vectorization degree is about 99%, they run faster on
the vector units. On the scalar units of the VP computers,
the CPU-time of the iterative method is comparable with
the non-vectorizable algorithm. But on the vector units of
the VP 50 and VP 400, a speedup is achieved of 3.7 and 8,
respectively.

VII. CONCLUSIONS

Localization schemes for particle-in-cell codes based on
boundary-fitted coordinates were introduced. These algo-
rithms are fully vectorizable. Due to the fact that the
schemes are exact, the particles near the boundaries have
not to be treated separately as in the scheme presented in
[I 111. Hence, all three methods avoid the resulting overhead
of an approximate localization for particles near bound-
aries. The localization based on the interpolation scheme
leads to a speedup of 3.7 to 8, depending on the vector com-
puter used. The advantages of this iterative method com-
pared with.the other ones are that the search is not limited
to the cell the particle was located in at the previous time
step and to neighboring cells and that the particle interpola-
tion weights are evaluated without additional operations.
Moreover, when using grids with almost squarelike shaped
cells, one to two iteration steps are sufficient. When using
grids with rapidly variing zones and with particles moving

LOCALIZATION SCHEMES IN 2D BOUNDARY-FITTED GRIDS

more than one cell per cycle, it is appropriate to combine 3A. E. Halter, private communication.

313

the indirect localization method via a background grid with
the iterative search.

ACKNOWLEDGMENTS

The author acknowledges the stimulating discussions with C. P.
Hugelmann, E. Rudolph, and D. Seldner in particular for their engagement
in finding the correct iteration formula (8) and the careful testing of the
algorithms by A. Miiller, which he appreciates very much. Thanks also to
F. Schmitz for his help in implementing the code on the Fujitsu VP vector
computers. The author also thanks the reviewers for their useful comments.

REFERENCES

1. J. Ambrosiano and R. Lohner, in Proceedings, Thirteenth Conference
on the Numerical Simulation of Plasmas, Santa Fe, Sept. 17-20, 1989,
p. IW20; R. Lohner and J. Ambrosiano, J. Comput. Phys. 91,22 (1990).

2. J. U. Brackbill and H. M. Ruppel, J. Comput. Phys. 65,314 (1986).

3. D. L. Cook, M. P. Desjarlais, S. A. Slutz, T. R. Lockner, D. J. Johnson,
S. E. Rosenthal, J. E. Bailey, R. S. Coats, R. J. Leeper, J. E. Maenchen,
T. A. Mehlhorn, T. D. Pointon, J. P. Quintenz, C. L. Ruiz, R. W.
Stinnett, W. A. Stygar, J. P. Van Devender, in Proceedings, Seventh
Canference on High-Power Particle Beams, Karlsruhe, 1988, p. 35.

8.

9.

10.

11.

12.

13.

14.

15.

16.

F. H. Harlow and W. M. Evans, Los Alamos Report LA-2139, 1959
(unpublished).

R. W. Hackney and J. W. Eastwood, Computer Simulation Using
Particles (McGraw-Hill, New York, 1981).

M. E. Jones, in Proceedings, Twelfth Conference on the Numerical
Simulation of Plasmas, San Francisco, Sept. 20-24, 1987, p. IM3.

M. Matsumoto and S. Kawata, in Proceedings, Seventh Conference on
High-Power Particle Beams, Karlsruhe, 1988, p. 581: J. Comput. Phys.
87,488 (1990).

R. L. Morse and C. W. Nielson, Phys. F1uid.s 14, 830 (1971).

J. P. Quintenz, J. Appl. Phys. 49, 4377 (1978).

W. Schimassek, 0. Stoltz, and A. Citron, in Proceedings, Seventh
Conference on High-Power Particle Beams, Karlsruhe, 1988, p. 16.

D. Seldner and T. Westermann, J. Comput. Phys. 79, 1 (1988).

J. F. Thompson, Z. U. A. Warsi, and C. W. Mastin, J. Comp. Phys.
47, 1 (1982); E. Halter, Die Berechnung elektrostatischer Felder in
Pulsleistungsanlagen, Kernforschungszentrum Karlsruhe GmbH,
KfK 4072, Karlsruhe, 1986.

T. Westermann, Nucl. Instrum. Methods A263, 271 (1988).

T. Westermann, Nucl. Instrum. Methods A281, 253 (1989).

T. Westermann, in Proceedings, Thirteenth Conference an the
Numerical Simulation of Plasmas, Santa Fe, Sept. 17-20, 1989, p. IM3.

A. M. Winslow, J. Comput. Phys. 2, 149 (1967).

