
JOURNAL OF COMPUTATIONAL PHYSICS 101, 307-3 13 (1992) 

Localization Schemes in 2D Boundary- Fitted Grids 

THOMAS WESTERMANN 

Kernforschungszentrum Karlsruhe GmbH, Abteilung fir Numerische Physik, HDI-NP, P.O. Box 3640, 7500 Karlsruhe, Germany 

Received November 30. 1989; revised October 22, 1990 

A discussion of localization schemes in two-dimensional structured 
grids consisting of convex four-point meshes is presented. These algo- 
rithms are applicable to particle-in-cell codes based on two-dimen- 
sional boundary-fitted coordinates in order to localize particles inside 
the grid. They are fully vectorizable and two of them are directly 
applicable also to triangular meshes. Since all of them are exact, they 
avoid an overhead for a special treatment of particles near the boundary 
as is necessary for the approximate localization proposed by Seldner 
and Westermann (J. Comp. Phys. 79 (1988)). Hence, they are suitable 
for complicated geometries with outer and inner curved boundaries. 
Depending on the vector computer used, a speedup of 3.5 to 8 is 
achieved for the fastest algorithm. 0 1992 Academic Press, Inc. 

I. INTRODUCTION 

Particle-in-cell (PIC) codes are an attractive computa- 
tional tool to study kinetic phenomena, e.g., in plasma 
physics [5]: A grid is introduced in order to compute the 
electromagnetic fields, and particles carrying electric charge 
and mass are advanced in these fields by solving the 
Lorentz equation. Originally, PIC codes were developed 
using uniform [S] or nonuniform [9] grid zoning with grid 
lines parallel to the coordinate axis. However, with these 
concepts it was not possible to treat complicated technical 
devices without simplification of the geometry. An example 
where it is essential to model the boundaries accurately are 
intense light-ion-beam diodes for inertial confinement 
fusion [3]. In the past, most codes were not able to treat 
curved shapes of the emitting parts of these diodes, and thus 
could not adequately model the influence of these shapes on 
the focusing of the ion beams. It also turned out that sim- 
plifications of technical geometries, e.g., at edges and curved 
parts of the electrodes, lead to artificial field-enhancement 
and, thus, to a distorted flow of particles. 

To overcome these difficulties, two-dimensional PIC 
codes were developed using grids fitted to the boundary of 
the electromagnetic devices. The concept of structured 
boundary-fitted coordinates is either based on triangular 
meshes [ 16,7] or on four-point meshes [ 12,6, 131. In both 
cases a logical rectangular grid is introduced onto which the 
fitted grid in the physical space is mapped. Essentially, two 

techniques are then used to numerically treat the fields and 
particles: 

The first approach as used, e.g., by Jones [6], is to solve 
the field equations together with the Lorentz equation in the 
logical grid. In the other case [ 131 one solves only the field 
equations in the logical grid but advances the particles in 
the physical space. In contrast to Jones, we prefer the second 
method, which is extendable also to unstructured grids, and 
standard techniques for solving the relativistic Lorentz 
equation can be applied. However, the drawback consists in 
the fact that in each time step the particles must be localized 
inside an irregular grid and the fields must be interpolated 
from irregular four-point meshes onto the particle positions. 

In principle, the problems of interpolation as well as of 
localization in irregular 2D meshes are solved by methods 
introduced in [ 111. These algorithms are well suited for vec- 
torization. The basic idea of the localization scheme in [ 111 
is to lay a fine equidistant mesh (background grid) over the 
boundary-fitted grid and to localize the particles inside this 
rectangular grid. A relationship between the equidistant 
mesh and the boundary-fitted grid is used to obtain the 
addresses of the particles with respect to the boundary-fitted 
grid. With this indirect method via a background grid one 
cannot decide exactly whether a particle near a curved 
boundary lies inside or outside the computational area. Par- 
ticles near boundaries have to be treated separately. When 
simulating geometries with curved inner boundaries such as 
in the case of the self-magnetically insulated B,-diode (cf. 
Fig. 8) [ 10, 141, the corresponding additional work for the 
treatment of particles near boundaries produces a large 
overhead. Hence, this method is very efficient as long as the 
computational area contains no curved inner boundaries. 

In this paper, three localization schemes avoiding this 
overhead are discussed. These algorithms are exact and fully 
vectorizable. After an introduction on the problem and the 
description of the originally used non-vectorizable algo- 
rithm in Section 2, a search algorithm based on the calcula- 
tion of areas is outlined in Section 3. In Section 4 follows 
the discussion of a scheme using the calculation of simplices. 
Both methods are also applicable to triangular meshes 
and contain parallel structures. In Section 5, an iterative 
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algorithm [ 151 is proposed based on a special interpolation 
scheme. Summary and conclusions are left to Section 6. 

II. NOTATION AND PROBLEM 

Notation. In this paper we consider two-dimensional, 
monoblock, structured grids consisting of arbitrary convex 
four-point cells. Hence, the grid is logically equivalent to a 
rectangular mesh which is a two-dimensional array of mesh 
points. In order to identify cells within a grid, each cell is 
assigned the addresses in the x- and y-direction of the left 
lower grid point of the cell as a pair of numbers (I, J). In an 
equidistant grid, the address of the cell, a particle with 
coordinates (x, y) is located in, is defined by 

Z= ZNT((x - x,JAx) + 1 

and 

J=~N~((Y-Y,)/~Y)+ 1, 

where (x,, y,,) are the coordinates of the left lower corner 
point of the grid and Ax and Ay are the mesh-sizes in the 
x- and the y-direction, respectively (see Fig. 1). 

Non-vectorized Search Algorithm. In boundary-fitted 
grids, the above formulas cannot be applied anymore. For 
this case we consider the fact that a particle lies inside cell 
(I, J) with corners P, j, Pi+ i,i, Pi+ r,,+, , Pi,.i+ i (see Fig. 2) 
if and only if it is 

l above the lower cell boundary Pi,jPi+ [,,, 

l on the left hand side of the right cell boundary 
pi+l,jpi+l,j+l~ 

l below the upper cell boundary Pi, j+, Pi+ ,,,, + 1 and 
l on the right hand side of the left cell boundary 

pi,jpi3, + 1 . 

This suggests the following non-vectorized search algorithm 
(originally proposed by Halter [3A]): 

SEARCH ALGORITHM. Step 1. Start in cell (I, J) = 
(I,,, J,,) the particle was located in at the end of the previous 
time step. 

Step 2. If the particle is below the lower cell boundary: 
J= J- 1, got0 step 2. 

(1.3 (2.3) 

EEI 

(3.3) 
,P(X.Y) 

(1.2) 
(2.2) 

(3.2) 

(1.1) (2,l) (3.1) 

FIG. 1. Addresses of the mesh points. 

FIG. 2. Particle P(.r, J) in boundary-fitted cell (1. J). 

Step 3. If the particle is on the right hand side of the 
right cell boundary: I= I+ 1, goto step 2. 

Step 4. If the particle is above the upper cell boundary: 
J=J+ 1, got0 step 2. 

Step 5. If the particle is on the left hand side of the left 
cell boundary: Z = I- 1, goto step 2. 

Step 6. The particle is in cell (I, J). 

Hence, there are at least four IF-clauses necessary for this 
direct search algorithm, even in case the particle has not 
moved outside the cell. This causes a very high CPU-time 
and, besides, the algorithm is not efficiently vectorizable. 

III. A LOCALIZATION SCHEME BASED 
ON CALCULATION OF AREAS 

In this section a localization scheme is investigated using 
the calculation of the area of quadrangles. In order to decide 
whether a particle lies inside a quadrangle ABCD, the area 
of the quadrangle is calculated and compared with the sum 
of the areas of the four triangles ABP, BCP, CDP, DAP 
(cf. Fig. 3). 

A particle P(x, y) lies inside quadrangle ABCD if and 
only if the area of the quadrangle A,,,, is equal to the sum 
of the areas of the four triangles AABP, ABCP, ACDP, A,,,: 

A ABCD- --AA,, +AB..+&DP+ADAP 

o Particle P is inside quadrangle ABCD. 

If the particle is outside the quadrangle, the sum of the 
areas of the four triangles is larger than the area of the 
quadrangle (cf. Fig. 4): 

A ABCD<AABP+ABCP+ACDP+ADAP 

o Particle P is outside quadrangle ABCD. 

A B 

FIG. 3. Point P(x, v) inside quadrangle ABCD. 
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FIG. 4. Point P(x, y) outside quadrangle AECD. 
with 

Under the reasonable condition that during a simulation 
with a particle-in-cell code a particle can only cross to a 
neighboring cell, it is sufficient to limit the search to the cell 
the particle was located in at the end of the previous time 
step and to the surrounding cells. This yields the following 
search algorithm: 

SEARCH ALGORITHM. Step 1. Start in cell (I, J) = 
(I,, .Z,) the particle was located in at the previous time step. 

Step 2. Calculate the areas A4($!, Ay$, A$$, A?;;, 
Ag$ of cell (Z, .Z). Divide the sum of the four triangles by 
the area of the quadrangle A$‘$,. 

Step 3. Repeat step 2 for the surrounding cells. 
Step 4. The particle is located in the cell with the 

smallest area quotient. 

This algorithm is applicable also to triangular grids. First, 
one has to select all triangles the particle can be located in 
and partition each of these triangles into three sub-triangles. 
With the same argument as before, the particle is located in 
the triangle with the smallest area quotient. The calculation 
of the areas of the quadrangles as well as of the sub-triangles 
can be computed independently and are, therefore, suited 
for parallelization. 

IV. A LOCALIZATION SCHEME BASED ON 
CALCULATION OF SIMPLICES 

In this section a localization scheme is introduced using 
the calculation of simplices. Let S be the convex hull of 
points 4x,, yd, W,,, ylo), C(XO~, YO,) Psimplex): 

S= ~,A+~,B+~,C;~i~0,i=1,2,3; ; Aj=1 
i=l 

Every element (x, y) E S is uniquely represented by a triple 
of real numbers (a, /I, y) such that 

A(~,.Y,,) %,,Y,,) 

FIG. 5. Point P(x, y) inside triangle ABC 

cr+B+y=l and rx3O,fl>O,yaO. 

Every point inside a triangle A(x,, y,,), B(x,~, y 1o), 
C(X,,, y,,) can be interpreted as an element of the corre- 
sponding convex hull S (cf. Fig. 5). Hence, a particle P(x, y) 
lies inside a triangle ABC if and only if a, j?, y E [w exist with 
the properties 

ax00 + BXlO + YXO, = x, 

“Yoo + bYlO + YYOl = Y, 

a+p+y= 1, 

and 

For a given point P(x, y) a, fi, y can be computed using 
the formulas 

(Yo, - YOONX -x00) - (x01 - %0)(Y - Yoo) 
B = (Yo1- YOCJ x10 - x00) - (Y10- YcdXOl - %o)’ 

(1) 

- (YlO - Yoo)(X - %o) + (x10 - XOONY - Yoo) 

y = (YOl - Yoo)( x10 - x00) - (4’10 - Yoo)(xol - x00)’ 
(2) 

tx=l-y-8. (3) 

In order to localize a particle inside a triangle, it is sufficient 
to compute ~1, fi, y E [w according to Eqs. ( 1 )-( 3) and check 
whether 

or not. Only if condition (4) is satisfied, point P(x, y) lies 
inside the triangle ABC. 

In order to localize a particle inside a quadrangle ABCD, 
one has to partition the quadrangle into two triangles ABD 
and DBC and calculate for both triangles (a’, /?I, y’) and 
(N’, p*, y’), respectively. The particle then lies inside 
the quadrangle ABCD if (a’, fl’, y1)~13 = [0, 11’ or 
(2, p*, y2) E 13. 

581/101/2-6 
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Under the condition that during a time step of a particle- 
in-ceil simulation a particle traverses at most over one cell 
boundary, the search algorithm can be limited to the cell the 
particle was located in at the previous time step and to the 
surrounding cells. By applying the simplex scheme, the 
following algorithm for quadrangles is obtained: 

SEARCH ALGORITHM. Step 1. Let (1, J) = (I,, J,,) be 
the cell the particle was located in at the previous time step. 

Step 2. Partition cell (I,, J,) and the eight surrounding 
cells into two triangles, respectively. In each triangle 
solve the system of equations (l)-(3) leading to 
(a’, /I’, )I’), . . . . (a’*, /I’*, y’*). 

Step 3. Set di = min(a’, pi, y’), i = 1, . . . . 18. 
Step 4. Determine the index i for which di is non- 

negative. Then the particle is inside the corresponding cell. 

It is trivial to note that this search algorithm is directly 
valid for triangular meshes. Since the computation of the 
parameters (c?, /I’, ;“) can be computed independently of 
each other, this computation can be performed in parallel. 

V. A LOCALIZATION ALGORITHM BASED ON 
AN INTERPOLATION SCHEME 

The advantages of the first two localization methods are 
that the calculation of the areas and the values of (SI, B, y) 
can be computed separately and independently of each 
other. Therefore, this algorithm is well suited for a 
parallelization strategy. However, these results cannot be 
used in order to find a localization strategy to shorten the 
search. In particular, when the particles cross more than one 
cell during a time step, the search has to be extended to 
additional 16 or even more cells. In this section a localiza- 
tion algorithm is introduced taking provisional results into 
account. The algorithm is based on an interpolation scheme 
[ 1.51 valid for arbitrary convex quadrangles. The interpola- 
tion formulas are applied iteratively in order to localize the 
particles inside boundary-fitted grids. 

Before discussing our scheme, the generalized area- 
weighting method used for interpolation is briefly outlined 
for completeness. For a detailed discussion see Ref. [ 111. 

After having finished the work, we were informed that 
J. U. Brackbill and H. M. Ruppel developed the same ideas 
for PIC calculations of fluid flows [2] and we heard from 
J. Ambrosiano [l] that he and R. Liihner investigated a 
similar search strategy in order to localize particles inside 
unstructured triangular meshes. 

Interpolation 

If a particle P(cY, , c(*) is located in a unit square, cell (Z, J), 
the field E, at the particle position is calculated from the 

helds Ei,,, E,, ,,,, E,, ,,, ,. ,, E ,,,,. , given at the mesh points 
using the standard area-weighting method [4, 8 1: 

E,=(l -a,)(1 -x2) E,.,+x,(l -az)E,+ / 

In order to be able to apply the area-weighting method in 
an arbitrary quadrangle Q the non-equidistant cell has 
to be transformed into the unit square I2 = [0, 11 x 
[0, 11. Let (x, v) E Q be the position of the particle inside 
cell (I, J) with corners l-x ,,,‘.l’i.,h (+x1+ 1./‘.1’,, I,,)’ 
(xi+,,j+,, Y;+,.~+ ‘1, (x,,,. I3 Ye.,+,). The interpolation 
weights (sl,, x2) E I2 are given by the following formulas: 

-p + (p2 + q)1’2 

u2= (x:+1,,+, - 1) 
for ,Y;+ ,,,+, # 1, 

(5) 
cl, = 

- 1 +‘Yv:::l,,+,-1) 
for .x:+,,~+, = I. 

X’ 
a, = 

l+c12(x:+,.,+,-l)’ 
(6) 

where 

p=~(1+x”(V;+,,+,-1)-y”(x~~+,,,+,-1)) _ 3 

and 

The computation of the square root and the IF-clauses 
for the case x:+,,,+, z 1 are avoided by solving Eq. (5) 
iteratively, 

3 
cp= 

2 1 + xs/xs ,+l.,+:(Y;+l.,+4 
(7) 

a’ = y”(1 +cI;-‘(x;+l,j+I- 1)) 
2 1 +x;-‘(X~+],,+] - l)+x”(y::+,,,+, - 1) 

for ia I, (8) 

and evaluating Eq. (6). When using grids consisting of 
trapezoids (in particular orthogonal grids) formula (5) is 
reduced exactly to the calculation of a: in (7). 

One of the characteristic features of applying the 
generalized area-weighting method as an interpolation 
scheme is that linear functions are represented exactly. This 
formulation has the advantage that the interpolation 
weights can be easily evaluated in an explicit manner. 
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Tll 
1 

cl- 

* (a). a,) 

(0.0) 
I2 

1 

Tij 

FIG. 6. Transformation of quadrangle Q onto the unit square Iz. 
FIG. 7. Transformation of point P with respect to cell (I, J). 

It is important to note that the transformation T (cf. 
Fig. 6) of the quadrangle Q onto the unit square I2 which 
maps each point P(x, y) of the quadrangle onto a point 
(c~i, az) depends on the geometrical structure of the 
quadrangle, e.g., the transformation is not the same for 
different quadrangles. 

Localization 

In the following, the interpolation scheme is used in order 
to find the particle position with respect to the grid: After 
particle P has been advanced the interpolation weights 
(c(i) a2) are computed by transforming the cell (I,, Jo) the 
particle was located in at the previous time step. With 
knowledge of these interpolation weights (c~i, ~1~) one can 
decide whether the particle still lies inside the same cell or 
whether it is outside the cell: 

(cI~, a2) E I2 o Particle P still is inside cell (I,, J,). 

(~1,) ~1~) $ I2 o Particle P has left cell (lo, J,). 

In particular, when using an equidistant grid, and considering 
that the particle can only move to a neighboring cell, the 
following holds: 

~,>l,cc,>l=-Particleincell(Z,+l,J,+l) 

cc,~I,cr,>1~Particleincell(Z~,J,+1) 

~1, < 0, ~1~ > 1 * Particle in cell (I0 - 1, Jo + 1) 

~,>l,cc,~I*Particleincell(Z,+l,.Z,) 

cr, E I, ~1~ E I * Particle in cell (I,, J,) 

tli < 0, a2 E I * Particle in cell (Z, - 1, Jo) 

t~,>1,a~<O~Particleincell(Z,+1,.Z,-1) 

a,~I,a~<O*Particleincell(Z,,.Z,-1) 

cr,<O,cc,<O~Particleincell(Z,-l,.Z,-1). 

However, when using a non-equidistant grid (cf. Fig. 7), 
it is not guaranteed that the particle is found by calculating 
the weights corresponding to the old cell addresses. When 
the particle has left the cell, this algorithm must be applied 

iteratively until the correct interpolation weights 
(c(i) CI~) E I2 are found. The search algorithm is then 

SEARCH ALGORITHM. Step 1. Let (Z, J)= (I,, J,,) be 
the cell the particle was located in at the previous time step. 

Step 2. Compute the interpolation weights (a,, x2) with 
respect to cell (Z, J). 

Step 3. Add the interpolation weights to the cell 
address: (Z+cr,, J+a,). 

Step 4. Set (Z, J) = (ZNT(Z+ a,), ZNT(.Z+ m2)). 

Step 5. Repeat steps 2 to 4 k E N times. 

The parameter k depends on the structure of the grid. In 
case of an equidistant grid k can be chosen to be 1. (In this 
case, however, it is advisable to determine the cell in a direct 
manner.) Our experience indicates that usually k = 3 is 
sufficient when using a grid with convex four-point meshes. 
It also turned out that for the purpose of localization it is 
sufficient to compute the new cell addresses of the particles 
only using U: (cf. Eq. (7)). 

Due to the local character of the transformation it is 
possible that at the lirst iteration cycle of the localization the 
values of the weights a, and a2 are to high if the grid zoning 
changes rapidly. In order to avoid such an “overshooting” 
of the weights they should be restricted (for example, to be 
between - 1.99 and 2.99). In particular, by restricting the 
interpolation weights possible singularities occuring in 
exceptional cases are eliminated. 

One advantage of this scheme compared with the two 
previous ones is that the search is not limited to the cell the 
particle was located in at the previous time step and to the 
surrounding cells, since this algorithm chooses its own 
strategy for each iteration step according to the results of 
the iteration step before. 

Depending on the grid, a particle can cross several cells (if 
this is permitted by the underlying physics and numerics) 
and is found with only few iterations. However, due to the 
local character of the transformation, the number k of itera- 
tion steps depends on how far the particles are allowed to 
move inside the grid and on the variation of the size and the 
shape of the zones. In particular, when using a non-smooth 
grid and particles are permitted to move over more than one 
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cell, this scheme becomes inefficient. In this case it is 
appropriate to combine the indirect localization method via 
a background mesh (cf. [ 111) with the iterative method. 
The indirect scheme delivers a good initial guess which can 
be taken as the starting point for an iterative search. By 
applying this combination k = 2 should always be sufftcient. 

VI. RESULTS 

As a matter of fact, all three localization schemes are 
exact. Hence, when performing simulations with our 
BFCPIC code [ 131, the numerical results are independent 
of the algorithm used. 

The localization schemes were introduced in order to 
reduce the CPU-times of the BFCPIC code to a reasonable 
length. In order to obtain realistic CPU-times for the 
localization schemes, a typical run of the BFCPIC code in 
case of the self-magnetically insulated Be-diode was per- 
formed [ 141. For the purpose of localization it is sufficient 
to limit the discussion to the grid model of this diode. A 
numerical model of the self-magnetically insulated Be-diode 
together with a boundary-Iitted grid (41 x 65 grid points) is 
shown in Fig. 8. For the simulation about 10,000 electrons 
and 22,000 ions were used. The numerical simulations were 
performed on the vector computers Fujitsu VP 50 and 
VP 400. 

Since in our code the time step is limited in such a way 

FIG. 8. Boundary-fitted grid of the self-magnetically insulated 
B,-diode, 41 x 65 grid points. 

TABLE I 

CPU-Times per Particle of the Localization Algorithms on tFu]ltsu 
Vector Computers Using k = 3 

-- ..~~.. .__~ -- 
VP 50,‘400 VP 50 VP ‘w 

CPU-time [ I(.F] (scalar mode) (vector mode) (vector mode I 

Non-vectorized 
method 18.4 18.1 17.x 
Area method 45.3 10.x 9.3 
Simplex method 42.7 12.4 10.2 
Iterative method 19.7 5.0 2.3 

that the particles can only move to a neighboring cell per 
cycle, k = 3 is sufficient for the iterative method. (When the 
particles are allowed to cross two cells, k = 5 must be chosen 
for this special kind of grid in order to guarantee that all 
particles are found.) 

In Table I the CPU-times for the localization schemes are 
given together with the ones for the non-vectorizable search 
algorithm. Listed is the average time required to localize 
one particle. 

As assumed, the original, non-vectorized algorithm is the 
fastest one on the scalar units of the computers, but it is not 
vectorizable. Due to the larger amount of arithmetic opera- 
tions of the area method and the simplex method, these 
schemes are not efficient on the scalar units. However, since 
the vectorization degree is about 99%, they run faster on 
the vector units. On the scalar units of the VP computers, 
the CPU-time of the iterative method is comparable with 
the non-vectorizable algorithm. But on the vector units of 
the VP 50 and VP 400, a speedup is achieved of 3.7 and 8, 
respectively. 

VII. CONCLUSIONS 

Localization schemes for particle-in-cell codes based on 
boundary-fitted coordinates were introduced. These algo- 
rithms are fully vectorizable. Due to the fact that the 
schemes are exact, the particles near the boundaries have 
not to be treated separately as in the scheme presented in 
[I 111. Hence, all three methods avoid the resulting overhead 
of an approximate localization for particles near bound- 
aries. The localization based on the interpolation scheme 
leads to a speedup of 3.7 to 8, depending on the vector com- 
puter used. The advantages of this iterative method com- 
pared with.the other ones are that the search is not limited 
to the cell the particle was located in at the previous time 
step and to neighboring cells and that the particle interpola- 
tion weights are evaluated without additional operations. 
Moreover, when using grids with almost squarelike shaped 
cells, one to two iteration steps are sufficient. When using 
grids with rapidly variing zones and with particles moving 
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more than one cell per cycle, it is appropriate to combine 3A. E. Halter, private communication. 
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the indirect localization method via a background grid with 
the iterative search. 
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